The evolution of tropical adaptation: Comparing Taurine and Zebu cattle

Eva KF Chan¹, Shivashankar H Nagaraj² and Antonio Reverter²

Cooperative Research Centre for Beef Genetic Technologies
CSIRO Livestock Industries, Queensland Bioscience Precinct
306 Carmody Rd., St. Lucia, Brisbane, Queensland 4067, Australia

¹Current Address:
Monsanto Vegetable Seeds Division
37437 State Highway 16
Woodland, CA 95695, USA
eva.king-fan.chan@monsanto.com

²Corresponding author and reprint requests:
Dr. Antonio Reverter
Tony.Reverter-Gomez@csiro.au
Ph.: +61 7 3214 2392
Fx.: +61 7 3214 2900
Summary

Beef cattle breeds consist of three major genetic subdivisions, the Taurine group adapted to temperate environments and the Zebu and Sanga groups both adapted to tropical environments. So far, the genetic bases for the differences in tropical adaptation have not been explored on a genome-wide scale. In this study, approximately 9,000 single nucleotide polymorphism markers were genotyped on 317 animals of a selection of Taurine, Zebu, and composite breeds to characterise any systematic differences between these groups. We identified 91 intra-breed-class markers: 78 were polymorphic only within the Zebu animals, while 13 were polymorphic only in the Taurine animals. We found 14 regions with radically different allele frequencies between Zebu and Taurine animals when at least 20 adjacent markers were analysed together. There were no fixed differences (fixed for alternate alleles between the two breed types) between Zebu and Taurine animals. A preliminary functional genomics analysis of these regions pointed towards signatures of tropical attributes including keratins, heat-shock proteins and heat resistance genes. The selection of one marker each from these 14 regions was efficient in classifying animals as Zebu or Taurine in a cluster analysis. We anticipate this procedure to be an optimal mechanism to develop a simple yet robust gene-based diagnostic tool for discriminating temperate from tropically adapted cattle.
Introduction

Modern cattle (Bos taurus L.) were probably domesticated several times in Southwest Asia from the aurochs, which had already diverged phenotypically into two major geographic land races: temperate and tropical (Fries and Ruvinsky 1999). Originally, this phenotypic difference was thought of as representing a species difference, hence the use of the species name Bos indicus for tropically-adapted cattle, but as all cattle are fully fertile, indeed, there is heterosis between cattle from the two geographic races, they are members of one species. In animal genetics literatures, however, the term Bos indicus is universally accepted despite the absence of a species difference.

Lenstra and Bradley (1999) and Bradley et al. (1996) provide a review of the phylogenetic analyses that have been performed on wild and domestic cattle species. In broad, there are three generally recognised cattle breed classes: Taurine, Zebu, and Sanga. Taurines represent those descended from European and Southwest-Asian ancestors, and have short ears and no hump. Zebu breeds represent those descended from South Asian ancestors and have long floppy ears and a prominent hump. Zebu animals were introduced to Africa by the Arab traders more than a thousand years ago, so the geographic influence of Zebu includes East Africa. The origins of the Sanga breeds are less clear, but they are found in West and South Africa, they may represent a separate domestication of Southwest Asian cattle, and appear to have been in Africa longer than the Zebu breeds. In East Africa, there has been a long history of crossing between Zebu and Sanga breeds, originally through the use of Zebu bulls. In general, purebred Sanga cattle do not have a hump.

Due to the origins and breeding practices, both natural and artificial, that occurred in different regions of the world, cattle of the different types are broadly divided into temperate (Taurine) and tropical (Zebu and Sanga) due to the common adaptation
characteristics that they possess. Temperate cattle have thicker coats, several breeds develop a winter coat, some are susceptible to sunburn, and they have stocky bodies. Tropical cattle have lower rectal temperatures in hot weather, carry lower burdens of the cattle tick \textit{Boophilus microplus}, and show greater ability to tolerate poor feed and inconsistent climate, a mark of tropical environments compared to more temperate, consistent environments. Zebu cattle show different foraging behaviour, and they have a different capacity for reproduction (Lunstra & Cundiff 2003 and Chase \textit{et al.} 2004; also see reviews by Turner (1980) and Mukasa-Mugerwa (1989)).

Evidences also exist at the genetic level demonstrating differences between these two land races. Kieffer & Cartwright (1968) showed that the Y chromosome of \textit{Bos taurus} bulls is submetacentric (i.e., its centromere is somewhat displaced from the middle point), while in \textit{Bos indicus} bulls the Y chromosome is acrocentric (i.e., its centromere is very near one end). Differences between Zebu and Taurine/Sanga cattle have been observed at the level of mitochondrial DNA (Loftus \textit{et al.} 1994; Bradley \textit{et al.} 1996). And at the level of autosomal DNA, there are evidences of differentiation between all three cattle groups as demonstrated using microsatellite markers (MacHugh \textit{et al.} 1997; Ibeagha-Awemu \textit{et al.} 2004). Microsatellites do not generally show fixed differences between groups because of the large number of alleles that they usually possess. There has been little effort so far to identify DNA polymorphisms on a genome-wide scale that would allow identification of all three groups, although there have been a few cases where DNA variants have been described that are polymorphic in one group, say Taurine, but monomorphic in another group (Kemenes \textit{et al.} 1999; Nijman \textit{et al.} 2003).

The recent efforts from The Bovine Genome Sequence Analysis Consortium (2009) and The Bovine HapMap Consortium (2009) represent an unprecedented resource to
disentangle the genetic architecture of complex traits in cattle. Animal geneticists have quickly exploited this resource to address a number of questions such as the effect of domestication on molecular evolution (MacEachern *et al.* 2009a) including the examination of positive selection and effective population size (MacEachern *et al.* 2009b), as well as the relationship between regions under positive selection and association to traits (Barendse *et al.* 2009). More recently, Flori *et al.* (2009) have used data from dense genotyping platforms to identify the main regions affected by the strong and recent artificial selection in three breeds of dairy cattle. The authors reported the existence of 13 highly significant regions subjected to strong and/or recent positive selection, and the genomic functionality of these regions pointed towards the antagonism between intensive dairy production and reproduction performance. The same group (Gautier *et al.* 2009) performed a whole genome scan for footprints of adaptive selection in 9 West African cattle populations and identified 53 genomic regions.

Complementing these studies, the task of identifying a large number of DNA variants that are different between Taurine and Zebu groups would facilitate the study of tropical adaptation, as well as provide some practical tools in cattle management. Traditionally, the proportion of Zebu contribution to an individual animal is crudely scored based on the extent of observable phenotypic differences such as the presence and size of a hump and ear floppiness. With a better understanding of the genetic differences between breed-types, DNA variants that are fixed in either Taurine or Zebu animals would allow animals of composite Zebu-Taurine ancestry to be identified more efficiently. A desirable chromosomal section originating from Zebu cattle could be followed over generations and its contribution to Zebu-Taurine differentiation may be determined. In particular, genomic regions responsible for
major differences between Taurine and Zebu that show little variation within the individual breed-type could be studied using a larger set of these polymorphisms. Therefore, the objective of this study is to examine the genotype of cattle of a variety of breeds including both Taurine and Zebu types of cattle using more than 9,000 autosomal and X-linked single nucleotide polymorphisms (SNP). We put particular emphasis in identifying fixed differences between Taurine and Zebu animals as well as identifying regions of the bovine genome that show large allele frequency differences between Zebu and Taurine animals.

Materials and methods

Animals: A subset of unrelated animals from the Australian Cooperative Research Centre for Beef Genetic Technologies (Beef CRC; http://www.beef.crc.org.au) reported previously (Upton et al. 2001; Burrow et al. 2003; Wolcott et al. 2006; Barendse et al. 2009) were used (no full- or half- sibs). They consisted of 317 pure breed cattle, where animals of composite Zebu-Taurine ancestry were considered to be purebred if their parents were also of the same composite ancestry. None of the animals were crossbred in the sense of having parents from different breeds. These animals consist of 70 Zebu animals of the Brahman (BRM) breed, 24 composite Zebu-Taurine Santa Gertrudis animals (SGT), 30 composite Sanga-Taurine Belmont Red animals (BEL), and the rest were members of 10 Taurine breeds of beef or dairy ancestry. These consist of the four beef breeds comprising Angus (ANG; n=42), Hereford (HFD; n=34), Murray Grey (MGY; n=14) and Shorthorn (SHN; n=18); and seven dairy breeds comprising Brown Swiss (BSW; n=4), Guernsey (GNS; n=4), Jersey (JER; n=10), Illawarra Shorthorn (IWSn=8), Australian Red (AUR; n=7) and Holstein (HOL; n=52).
SNP genotypes: The animals were genotyped using the MegAllele 10k SNP Panel (Hardenbol *et al.* 2005) by ParAllele Inc. and its parent company Affymetrix. This SNP panel consists of 9,919 SNP that are randomly (and roughly uniformly) distributed across the genome with an average spacing of approximately 325 kb per SNP. Further details of the SNP can be found at the link ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/snp/Btau20050310/. The bulk of the SNP on the array were obtained by comparing the genome sequence of a Hereford animal to the partial sequence of a Holstein (72.4%), an Angus (15%), a Limousin (3.1%), and a Brahman (2%) animal, with an additional 7.5% cSNP (coding SNP) obtained from the Interactive Bovine *in silico* SNP database (Hawken *et al.* 2004). Thus, in this study, the origin of a SNP is designated by the non-Hereford breed used in its discovery, and consequently, all Holstein, Angus, and Limousin SNP are Taurine SNP while Brahman SNP are also referred to as Zebu SNP. In summary, the majority of these SNP are common differences between a Taurine beef and dairy animal, with a small percentage of SNP being polymorphic between a Taurine and a Zebu beef animal. Of the genotyped SNP, those with more than 10% of missing data were excluded, leaving a total of 8,427 SNP. Of these, 7,956 were mappable onto the Btau4.0 assembly (Liu *et al.* 2009), allowing their location to be identified.

Allelic variations: Zebu and Taurine fixed differences were determined by comparing the allele distribution in the Brahman breed with the combined purebred Taurine animals. A SNP is defined as private in Taurine animals if it is polymorphic in each of the ten Taurine breeds with a minor allele frequency (MAF) $\geq 5\%$ and monomorphic in the Brahman breed. Similarly, a SNP is private in Brahman if it is polymorphic with MAF ≥ 0.05 and monomorphic in all Taurine animals. A rarefaction approach through the ADZE software (Szpiech, Jakobsson, and Rosenberg 2008) was used for
estimating the number of private alleles per locus while accounting for sample size differences across breeds and breed-types. For each group of SNP (described in the previous section), the average numbers of alleles per SNP were estimated for each breed-type for an assumed sample size of 2 to 20.

Fixation indices (F_{ST}) were estimated using the method of Weir and Cockerham (Weir & Cockerham 1984) for 1) between breeds, 2) between Taurine breeds and 3) between Taurine and Zebu breeds where all Taurine animals were grouped into a single population. Estimates were similar irrespective of using all SNP, only autosomal SNP or specific SNP types (Supplementary Table 1). Results were used as a symmetrical distance matrix for the unrooted Neighbor-Joining Tree estimation using R/ape (Paradis et al. 2004).

Compound diplotype: We used the SNP density to identify chromosomal regions that are shared identical-by-state by searching for long identical diplotypes shared within Taurine or Zebu animals but differing between these types. Because allelic phase is unknown for our SNP, we define a compound diplotype as one containing at least 20 consecutive SNP all of which must have significantly differential allele frequencies between the two breed types. The test for difference in allelic frequencies was performed using the two-proportion Z-test; for each locus,

\[
z = \frac{p_{\text{indicus}} - p_{\text{taurus}}}{\text{SE}} \quad \text{and} \quad \text{SE} = \sqrt{p(1 - p)\left(\frac{1}{n_{\text{indicus}}} + \frac{1}{n_{\text{taurus}}}\right)}
\]

where p is the total allele frequency and n is the sample size. The H_0: $z = 0$ was assessed with P-values obtained from a normal distribution. A compound diplotype is defined if at least 20 consecutive SNP have point-wise $P < 0.05$, and a representative SNP per compound diplotype is chosen as the one with the largest $|z|$.

Extended Haplotype Homozygosity (EHH): The counting algorithm of Tang et al. (2007) was implemented for identifying differential extended haplotype homozygosity regions between the two breed types. For each breed type, the proportion of homozygous individuals, EHHS\(_{i,j}\), at the \(i^{th}\) and \(j^{th}\) SNP were calculated in two steps. First, for each SNP\(_i\), EHHS\(_{i,j}\) between SNP\(_i\) and incrementally distant flanking SNP\(_j\) were calculated until EHHS\(_{i,k}\)<0; this is performed for both \(j>i\) and \(j<i\). Second, the extended haplotype homozygosity of SNP\(_i\) was calculated:
\[
i\text{ES}_i = \sum (EHHS\(_{i,j}\)) \text{ for } i \leq j \leq k \text{ for the region } 3' \text{ of } i \text{ (or } i \geq j \geq k \text{ for the region } 5' \text{ of } i).\
\]
Differential regions of extended haplotype homozygosity between the two breed types were based on the standardised log-ratio of iES\(_i\) between the two breed types (Tang et al. 2007):
\[
\ln(R_{sb}) = \ln(i\text{ES}_{i,T} / i\text{ES}_{i,Z}) \text{ where } T=\text{taurine} \& Z=\text{zebu}.
\]
To identify significant regions of positive selection, we estimated 1) the null distribution of \(\ln(R_{sb})\), and 2) distribution of noise: \(\text{SD}(\ln(R_{sb})) / \ln(R_{sb})\). SNP \(i\) is significantly under different selection pressure between the two breed types when it satisfied two criteria. First, \(\ln(R_{sb})\) has to have bootstrap \(P \leq 0.01\): i.e. if \(\ln(R_{sb})\) is more extreme than 1% of 200 bootstrap estimates where each bootstrap estimate was determined from a repeat analysis with individuals re-sampled from the total population (combining the two breed types) Second, \(\ln(R_{sb})\) has to be within the mid-50 percentile of its noise distribution where such a distribution was based on 50 bootstrap analyses with individuals re-sampled within their own breed group. Finally, a genomic region is declared as significant if \(\geq 50\%\) of the SNP within the region were significant.

STRUCTURE: The Bayesian clustering program STRUCTURE (Pritchard et al. 2000) was run assuming admixture model and correlated allele frequencies (Evanno et al. 2005) with the degree of admixture inferred from the data. From preliminary STRUCTURE runs we determined 6,000 burn-ins followed by 1,000 MCMC
iterations were sufficient to ensure convergence of parameter estimates (data not shown). For each K (assumed number of ancestral populations), five replicate runs were performed. The ΔK method of Evanno et al. (2005) was employed to determine the K that best represent our data from K=1 to K=13; all five replicate runs revealed a clear peak at K=2 (Supplementary Figure 6). We used the modified version of Symmetric Similarity Coefficient (Nordborg et al. 2005) initially proposed by Rosenberg et al. (2002) to quantify the consistency between replicate runs. The average and standard deviations of the estimated proportions of the two ancestral proportions were estimated for each breed: i.e. estimated across all individuals of a breed.

Results

Allelic privacy: first indication of genetic difference between breed types

The first bovine SNP genotyping array platform (MegAllele 10K SNP panel; Hardenbol et al. 2005) provided an excellent resource for identifying breed-type specific polymorphisms due to the approach adopted for SNP discovery, namely the identification of SNP between two breeds. We used this SNP panel to study the genetic differences between 10 Taurine breeds, a Zebu breed (Brahman), a Zebu-Taurine composite breed (Santa Gertrudis), and a Sanga-Taurine composite breed (Belmont Red). Of the 8,238 informative SNP (polymorphic with minor allele frequency (MAF) exceeding 5% in at least one breed) 13 were private in the Taurine breed-type (i.e. polymorphic in taurines but not in Brahman; Supplementary Table 2). Based on the method of SNP discovery (Hardenbol et al. 2005), ten of these were known to be polymorphic between at least two taurine breeds (Hereford vs. Holstein or Angus or Limousin). Our data further showed that these markers are also
polymorphic within each of the taurine breeds but monomorphic within Brahms. In contrast, 78 SNP were private in Brahms (Supplementary Table 2). The majority of these (~70%) were known to be polymorphic between Brahms and Herefords (Hardenbol et al. 2005). Here, we showed that these markers are polymorphic within Brahms and fixed in all ten taurine breeds for the same allele. Of these total 91 private SNP, 67 and 56 were polymorphic in the Santa Gertrudis and Belmont Red samples, respectively; more than 53% were polymorphic in both and 18% were polymorphic in only one of the two composite breeds (Supplementary Table 2). We found no polymorphisms with alternate segregating alleles between the two breed types; i.e. no DNA variants were fixed (i.e. monomorphic) in the Brahman for one allele and fixed for the alternate allele in the combined Taurine sample or vice versa.

Two major limitations were recognised in this study, namely imbalanced sampling (many of the smaller breed samples had higher proportions of observed monomorphism; Figure 1) and SNP discovery bias (there was a lower percentage of monomorphism in a breed for SNP obtained by comparing the Hereford reference sequence to an animal from that breed; Figures 1-2). Despite these limitations, our results showed that Brahman is intrinsically more variable than taurine breeds. All Taurine breeds showed high levels of monomorphism for DNA variants for Brahman SNP (Figure 2). Even the Hereford, in its role as the reference breed for SNP discovery, was monomorphic for 15% - 30% of the Brahman SNP. In contrast, while Brahman animals showed similar levels of monomorphism as Taurine animals for Taurine SNP not used in the SNP discover, many of the Brahman SNP have higher proportion of polymorphism specific to Brahman.
The composite breeds, Santa Gertrudis and Belmon Red, also showed similar patterns of lower monomorphism for both the Taurine and Zebu SNP, but this was unsurprising given their composite origins.

Genetic variations and breed relationships

Although there are few Brahman SNP in this dataset, they had a disproportionate effect on the estimates of genetic diversity (as per the F_{ST} index) between breeds and breed types due to differences in the extent of polymorphism between breeds. Using Taurine-derived SNP alone, the estimated F_{ST} between Taurine breeds was 12.2% and between Taurine and Zebu breeds was 22.1%. Using the Brahman SNP alone, the F_{ST} between Taurine breeds was 9.5% and between Taurine and Zebu breeds was 50.6%. Using all the SNP, F_{ST} between Taurine breeds was 12.1% and between Taurine and Zebu breeds was 22.8%. These inter-Taurine breed F_{ST} estimates were consistent with previous reports (Kantanen *et al.* 2000; Wiener *et al.* 2004), thus providing confidence towards the clear difference between inter-Taurine F_{ST} and Taurine-Zebu F_{ST} estimates, despite the notable SNP ascertainment bias (Supplementary Table 1).

Relationships between breeds were determined by constructing an unrooted Neighbour-Joining tree using breed-pair F_{ST} estimates. These results (Figure 3) were highly consistent with the known genealogy/history of the breeds. Most notably, Brahman is most distinct from the other 12 breeds; the two composite breeds were clustered together on the same branch as Brahman, all of which were distinct from the Taurine breeds. This global picture of breed-relationship were also obtained with breed-specific SNP, the subset of autosomal SNP, or a subset of equal numbers of Brahman and Holtein SNP (Supplemental Figures 4-5), suggesting the differentiation of Brahman from composite breeds from Taurine breeds surpasses any inherent SNP discovery biases. However, despite this clear pattern of breed-type divergence, the
current SNP panel does not allow accurate quantification of divergence time between cattle breeds.

Genomic differences between breed types

Because there are only a few (~1% total SNP) fixed differences between the Zebu and Taurine breeds, we examined whether there were regions of the genetic material that showed many SNP with consistently different allele frequencies. We identified 14 compound diplotypes encompassing 326 SNP, ranging from 21 to 30 SNP per compound diplotype (Table 1 & Supplementary Table 3 for full listing of SNP). We tested the null hypotheses that the 326 SNP within the 14 compound diplotypes were sampled randomly from the total SNP set without bias for any of the SNP-discovery breeds using the χ^2 test with P-values estimated from 5,000 permutations. There was evidence that the 326 SNP were over-represented by Limousin- and Brahman-derived SNP and under-represented by Holstein-discovered SNP ($\chi^2 = 23.1$, $P < 0.001$). These 14 compound diplotypes represent genomic regions that have undergone (or are undergoing) independent genetic selection and therefore independent adaptation.

To identify positive selections that have led to complete or near complete fixation we searched for regions of differential extended haplotype homozygosity (EHH) between the two breed types (Tang *et al.* 2007). A total of 142 SNP were identified as having significantly differential extended haplotype homozygosity values between the two breeds. Of these, we deduced twelve regions, encompassing a subset of 124 SNP (6 – 47 SNP per region), with significant signals of strong recent positive selection (Table 2). In general, much stronger evidence of selection was observed in Taurines when compared to Zebus (extent of extended haplotype homozygosity was higher in Taurines compared to Brahman; Supplementary Figure 6), and this was true for eight
of the twelve significant regions (Supplementary Table 4), thus supporting the common theory that Zebus are more ancestral than Taurines.

Interestingly, these twelve regions did not correspond to our compound diplotypes. In fact, aside from the sex chromosome, the distributions of these two sets of genomic regions appear independent of each other (Figure 4). These results suggest the regions of positive selection (EHH regions), likely in Taurine breeds, are different to those where both the Taurine and Zebu are under independent selection (compound diplotypes). Despite the distinction between these two classes of genomic regions, both are able to distinguish and reconstruct the inter-breed relationships as manifested by unrooted Neighbour-Joining trees from using F_{ST} estimates (Figure 3).

Estimating cattle ancestry

Finally, we used the program STRUCTURE (Pritchard et al. 2000) to estimate the proportion of common ancestry between the 13 breeds. Based on 7,821 autosomal SNP, STRUCTURE clearly indicated two ancestral populations corresponding to the 13 breeds (Supplementary Figure 7), confirming previously observed results (The Bovine HapMap Consortium 2009). Note that identical results were obtained using all SNP, inclusive of X-linked and unmapped SNP, either because X-linked SNP have minimal effect on estimating cattle ancestry or because there are relatively few X-linked SNP; only results from autosomal SNP are presented. These two clusters corresponded clearly to the two breed types (Figure 4 top): on average, Brahman individuals have 0.92 (±0.05 SD) probability of belonging to one of the two clusters (Zebu ancestry) and on average individuals of the 10 Taurine breeds have > 0.92 (< 0.02 SD) probability of belonging to the second cluster (Taurine ancestry). This result is consistent across five replicate runs with symmetric similarity coefficient (Rosenberg et al. 2002), SSC, of 0.99. The composite Belmont Red and Santa
Gertrudis individuals were found to have mixed Taurine and Zebu ancestry, with respective probabilities of 0.34 (±0.08 SD; 0.21 – 0.49) and 0.37 (±0.05 SD; 0.28 – 0.47) Zebu ancestry.

Functional genomic analysis of candidate regions

The performance attributes for tropical adaptation in cattle are broadly classified as fertility, growth, carcass composition, heat resistance, parasite resistance and disease resistance. In a bid to identify regions (genes) associated with any of the above characteristics, we combined literature mining, bioinformatics approaches and functional annotation of the cattle genome and carefully studied the 14 compound diplotype (Table 1) and 12 EHH (Table 2) regions. The length of each block of genome varied between 5Mb and 20Mb spanning 12 to 153 genes including a significant number of genes with unknown function (See Supplementary Tables 3 & 4 for full list).

In an effort to obtain a broad functional insight for these set of genes, we used Gene Ontologies to find any over-representation in all or a subset of genes. Although, we did not observe any over-representation implying heterogeneous nature of genes, we found a number of genes/family of genes that have been reported to be associated with one or more performance attributes for tropical-adaptation (O’Gorman et al. 2006; O’Gorman et al. 2009; Piper et al. 2009; Wang Y. H., 2007). First, we found a number of keratins on chromosome 19 (42.2 – 44.2 Mb; Table 2) and where the signature of selection is in the direction of Zebu. Second, we found two heat shock proteins: \textit{HSPA14} (Table 1) and \textit{HSPB9} (Table 2). Third, a number of immune system activation genes in response to environmental stress such as interleukins: \textit{IL33}, \textit{IL16}, \textit{IL17RB}, \textit{IL17RA}; and CD antigens: \textit{CD9}, \textit{CD38}, \textit{CD44}, \textit{CD59}, \textit{CD274} and \textit{IL2RG}. Fourth, we found a total of 25 genes from the solute carrier family. Finally, we found
a number of genes implicated in tick resistance including \textit{NADH} dehydrogenases: \textit{NDUFA12}, \textit{NDUFA9}, \textit{NDUFAF1} and \textit{NDUFV2} (Piper \textit{et al.} 2009).

We then systematically compared the regions from our findings with animal QTL database for any overlapping region that contains functionally relevant QTL. A careful observation of AnimalQTLdb (Hu \textit{et al.} 2007) revealed a specific region in chromosome 4 that reported the presence of QTLs for marbling score in cattle from four independent studies that overlaps with the region we have reported in chromosome 4 (47.4 to 59.9 kb) and spanning 30 SNPs.

Discussion

In this study, we examined several techniques to classify the proportion of an animal that could be traced to either a Taurine or a Zebu origin. Although a breed of composite Sanga-Taurine animals was included, none of the SNP is of Sanga origin, so conclusions for such breeds cannot be categorical because of the inherent ascertainment bias in the SNP discovery.

Differences between Zebu and Taurine cattle, using this sample of animals and SNP, appear to be more of degree than kind. Given the number of SNP, it was surprising that only 1\% was private, i.e. polymorphic in only Taurine or Zebu animals. Most of these private alleles were in Brahman SNP and private in Brahman animals, rather than for the Taurine SNP or Taurine animals. These results suggest that the ancestral populations of cattle were large, so that large numbers of polymorphisms have been maintained and that most polymorphisms may be ancient and predate the split between the ancestors of cattle that led to the Zebu breeds compared to the Taurine breeds (The Bovine HapMap Consortium 2009; The Bovine Genome Sequencing and Analysis Consortium \textit{et al.} 2009).
The Brahman originated in the United States of America as a composite of at least four breeds from India and Brazil, as well as the inclusion of Taurine cows to increase numbers (Briggs and Briggs, 1980). Breeders have subsequently tried to increase the amount of Zebu ancestry by using semen from purebred Zebu animals, but there would still be a residue of Taurine ancestry. The range of Zebu breeds used, plus the original use of Taurine dams, help to explain the greater variability of the Brahman. Analysis of population substructure shows that some Brahman animals have a residue of Taurine alleles. It also shows that some Taurine animals show either an introgression of Zebu alleles, or alleles that are now primarily found in Zebu animals but that may stem from the common ancestor of the Zebu and Taurine animals. This is supported by the New South Wales Department of Primary Industries, who claimed that Brahman was developed from the progeny of four Indian Zebu breeds with some infusion of local British breeds (Bos taurus) in the early 1800s in USA (Agfact A2.3.11; http://www.dpi.nsw.gov.au/agriculture/livestock/beef/breeding/breeds/brahman).

The current set of SNP classifies the composite animals into proportions of Zebu and Taurine that agrees with the known ancestry of the Santa Gertrudis, which is a nominally 5/8 Shorthorn and 3/8 Brahman. The interesting comparison of ancestry is the Belmont Red, which shows a similar proportion of Zebu and Brahman ancestry. The Belmont Red is nominally ½ Africander and ¼ each of Hereford and Shorthorn. In the Beef CRC cattle, commercial Belmont Red cattle were used, and while those are generally without Brahman ancestry, and there is certainly Brahman ancestry in some research herds of the Belmont Red, the level of Zebu ancestry found here (34%) is greater than what would be expected for these animals to be registered as Belmont Red. Since 1985, the Belmont Red Association has allowed up to 25% Bos indicus in
their registered animals (http://www.belmontred.com.au/). This suggests that these SNP are a signal of Sanga ancestry, but because Sanga were not used in the SNP discovery, this ancestry is not recognised as a third group. It may represent some ancient Zebu ancestry, but because the Africander cattle are derived from the southern most part of Africa, and the Bantu tribes had not reached that part of southern Africa, the amount of ancient Zebu ancestry would be minimal.

Genomic regions of differential extended haplotype homozygosity between two populations are indicative of recent selection or rapid fixation of the alternate allele within a short period of time whereby preventing recombination at nearby regions in one of the two populations. This is different to compound diplotype which are extended regions with differential allele frequencies between two populations therefore are indicative of variable selection pressure or genetic drift. The EHH approach is useful when we consider the Zebu as an ancestral breed to the Taurine: recent selection in the Taurine from the Zebu will be reflected in the analysis. Conversely, if environmental (climatic) adaptation occurred independently in the two populations (breed types), then one would expect the corresponding genetic regions controlling adaptation to be in drift in both populations with different allele frequencies.

Some compound diplotypes may be more than large differences due to drift between Zebu and Taurine ancestries. Further analyses of these SNP, particularly in animals such as the Nelore or the Gir breeds, which have essentially no known Taurine ancestry, might help resolve whether some of the allele distributions represent Zebu specific effects compared to effects that might be due to the multibreed Zebu as well as original Taurine cow composition of the Brahman breed. These regions may represent those parts of the genome that contribute to the temperate and tropical
adaptations of Zebu and Taurine animals. Specific association tests between these SNP and traits values for parasite resistance, rectal temperatures and drought tolerance may confirm that these are signatures of adaptive evolution.

From a functional genomics viewpoint, we argue that we have indeed found a number of genes that are either directly or indirectly associated with one or more performance attributes for tropical adaptation. For instance, a number of keratins (heteropolymeric structural proteins) form the basis for structural constituent of epidermis/epidermis development which in turn plays a role in adaptations to different climatic conditions including tick resistance (Wang et al. 2007; Piper et al. 2008). In addition, heat shock proteins are heavily differentially expressed in a number of gene expression studies (for a recent review, see Collier et al. (2008) and references therein) and independently shown to be associated with tropical adaptation. Finally, the overlapping region in QTL database also demonstrate with additional evidence of the significance of these genomic regions and requires detailed and directed experiments to obtain a thorough insight into molecular basis of tropical adaptation in cattle.

In conclusion, we anticipate the study presented here to be an effective approach to identifying genomic regions specific to the two cattle land races and subsequently assisting in the discrimination between temperate and tropically adapted cattle. The application of our procedure using larger samples and denser SNP chip is warranted.

Acknowledgements

The authors would like to thank Dr. Warren Snelling for providing the mappings of composite markers on the Btau4.0 assembly, and Dr. Gavin Huttley for useful discussions. Dr. William Barendse provided useful recommendations about data analysis and insights from the Bovine HapMap Consortium. Sigrid Lehnert and Brian
Dalrymple provided helpful reviews. Shivashankar Nagaraj is thankful to the CSIRO OCE Post-Doctoral Fellowship Program. We thank the owners of the Beef CRC database, the Commonwealth Scientific and Industrial Research Organisation, the Queensland Department of Primary Industries and Fisheries, the New South Wales Department of Primary Industries and the University of New England.
References

Table 1 Compound diplotypes: Genomic regions with significant evidence for differential allele frequencies between Taurine and Zebu cattle.

<table>
<thead>
<tr>
<th>Number of SNP</th>
<th>Chromosome: Interval (Mb)</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>1: 89.7 – 95.5</td>
<td>Solute carrier SLC1A7</td>
</tr>
<tr>
<td>24</td>
<td>3: 98.8 – 104.6</td>
<td>Solute carrier SLC26A3 & SLC26A4</td>
</tr>
<tr>
<td>30</td>
<td>4: 47.4 – 59.9</td>
<td>Solute carriers SLC17A8, SLC25A3, & SLC5A8.</td>
</tr>
<tr>
<td>29</td>
<td>5: 64.5 – 72.9</td>
<td>CD antigen CD28 [hp1]</td>
</tr>
<tr>
<td>21</td>
<td>5: 110.8 – 118.7</td>
<td>Interleukin IL17RA</td>
</tr>
<tr>
<td>21</td>
<td>6: 34.0 – 37.6</td>
<td>CD antigen CD38.</td>
</tr>
<tr>
<td>28</td>
<td>8: 40.5 – 47.3</td>
<td>Interleukin IL33 & CD274</td>
</tr>
<tr>
<td>24</td>
<td>10: 28.3 – 37.4</td>
<td>Tick-resistant gene NDUF9</td>
</tr>
<tr>
<td>25</td>
<td>13: 24.9 – 30.3</td>
<td>Heat shock protein HSPA14</td>
</tr>
<tr>
<td>24</td>
<td>15: 61.6 – 67.6</td>
<td>CD antigen CD44 & CD59</td>
</tr>
<tr>
<td>24</td>
<td>16: 35.2 – 45.2</td>
<td>Solute carrier SLC1A2</td>
</tr>
<tr>
<td>24</td>
<td>22: 5.8 – 10.7</td>
<td>Solute carriers SLC25A33, SLC2A5, & SLC45A1</td>
</tr>
<tr>
<td>22</td>
<td>X: 48.7 – 67.1</td>
<td>Interleukin receptor IL2RG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solute carriers SLC35A2 & SLC7A3</td>
</tr>
<tr>
<td>Number of SNP</td>
<td>Chromosome: Interval (Mb)</td>
<td>Genes</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>5: 15.7 – 18.5</td>
<td>Solute carrier SLC6A15</td>
</tr>
<tr>
<td>8</td>
<td>10: 9.3 – 11.5</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td>10: 81.5 – 82.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11: 28.1 – 28.1</td>
<td>No genes found</td>
</tr>
<tr>
<td>4</td>
<td>13: 70.8 – 72.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18: 14.9 – 21.1</td>
<td></td>
</tr>
<tr>
<td>5*</td>
<td>19: 42.2 – 44.2</td>
<td>Family of keratin genes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat shock protein HSPB9.</td>
</tr>
<tr>
<td>13*</td>
<td>21: 24.2 – 30.7</td>
<td>Interleukin IL16.</td>
</tr>
<tr>
<td>4</td>
<td>22: 20.8 – 21.9</td>
<td>No genes found</td>
</tr>
<tr>
<td>16*</td>
<td>22: 46.1 – 56.7</td>
<td>Interleukin IL17RB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solute carriers SLC25A20, SLC26A6, SLC38A3, SLC6A1, & SLC6A20</td>
</tr>
<tr>
<td>7</td>
<td>X: 1.2 – 7.0</td>
<td>Interleukin receptor IL2R2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solute carriers SLC35A2 & SLC7A3</td>
</tr>
<tr>
<td>47</td>
<td>X: 39.5 – 73.5</td>
<td>Tick-resistant gene NDUFV2</td>
</tr>
</tbody>
</table>
Figure 1 Relationship between proportion of monomorphism and sample size. The proportions of monomorphism are shown for all or breed-specific (BRM, HOL, ANG, LMS) SNP. The breed with the corresponding sample sizes are shown at the bottom of the plot (see Methods and Materials for breed code).
Figure 2 Rarefaction analysis on the number of private alleles per locus. The ADZE software was used to estimate the average number of private alleles per locus for sample sizes of two to twenty.
Figure 3 Neighbouring-Joining Tree of all 13 breeds constructed using F_{ST} values estimated for each breed-pair. The same analysis was performed using all 8,427 SNP, 326 SNP within the 14 compound diplotype regions, or 124 SNP within the 12 extended haplotype homozygosity regions. Breed acronyms are as follows: BRM = Brahman; SGT = Santa Gertrudis; BEL = Belmont Red; HFD = Hereford; BSW = Brown Swiss; HOL = Holstein; AUR = Australian Red; GNS = Guernsey; JER = Jersey; IWS = Illawarra Shorthorn; SHN = Shorthorn; ANG = Angus; and MGY = Murray Grey.
Figure 4 Distribution of SNP. Each SNP is represented as a horizontal dash on the 30 vertical lines corresponding to the 29 autosomes and the X chromosome. Pink and blue dashes indicate SNP within the 14 compound diplotypes and 12 extended haplotype homozygosity regions respectively.

Figure 5 STRUCTURE prediction of the proportion of two ancestral populations (K=2) corresponding to 317 individuals belonging to 13 breeds using 7,821 autosomal SNP. The result is the averages of five Markov chain Monte Carlo replicate runs. Individuals (on the x-axis) have been ordered based on the proportion of Taurine (yellow) ancestry within each breed. See MM for breed code.